Willi-Hans Steeb^{1,2} and Yorick Hardy¹

Received September 12, 2005; accepted January 26, 2006 Published Online: April 12, 2006

Quantum gates are described by unitary operators. We discuss the construction of Hamilton operators from the unitary operators. Different techniques are applied.

KEY WORDS: quantum gates; hamilton operators; unitary operators.

Quantum gates are described by unitary operators (Hardy and Steeb, 2001; Nielsen and Chuang, 2000; Steeb and Hardy, 2004). Here, we consider a finite dimensional Hilbert space and thus the unitary operators are described by $n \times n$ unitary matrices. A unitary matrix U is defined by $U^* = U^{-1}$. The eigenvalues of U lie on the unit circle in the complex plane; that is they may be expressed as $\exp(i\phi_k)$, $\phi_k \in [0, 2\pi)$ and k = 1, 2, ..., n. Now any unitary matrix U can be written as $U = \exp(iK)$, where K is a Hermitian matrix ($K^* = K$). In this paper, we describe several methods to construct the Hermitian matrix K from a given unitary matrix U which represents a quantum gate. Then we will relate the Hermitian matrix K to a Hamilton operator H given by $U = \exp(-iHt/\hbar)$ with $H = \hbar\omega A$, where A is a Hermitian matrix. Thus $K = -A\omega t$ and with the frequency $\omega = 1/t$ we obtain K = -A. We consider 1-qubit and 2-qubit gates.

The methods, we apply for the construction of the Hermitian matrix K are the sine-cosine decomposition, the Schur decomposition (calculating the eigenvalues and eigenvectors of U and then rotating the matrix into diagonal form), the Putzer method and calculating the log of a square matrix.

The most common 1-qubit gates are the NOT-gate given by

$$U_{\rm NOT} = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix},\tag{1}$$

953

0020-7748/06/0500-0953/0 © 2006 Springer Science+Business Media, Inc.

¹ International School for Scientific Computing, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa.

² To whom correspondence should be addressed at International School for Scientific Computing, University of Johannesburg; e-mail: whs@na.rau.ac.za.

the Hadamard gate given by

$$U_H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \tag{2}$$

and the phase gate

$$U_P = \begin{pmatrix} 1 & 0\\ 0 & e^{i\phi} \end{pmatrix}.$$
 (3)

Other gates could be the Pauli spin matrices σ_y , σ_z which are unitary and Hermitian. The phase gate contains the σ_z -gate with $\phi = \pi$.

A useful identity for our computation is that for any $n \times n$ matrix A we have

$$\det \exp(A) \equiv \exp(\operatorname{tr} A). \tag{4}$$

Thus if A = iK and $U = \exp(iK)$ we obtain

$$\det \exp(iK) \equiv \exp(i\mathrm{tr}K). \tag{5}$$

or det $U = \exp(i \operatorname{tr} K)$. Thus if det U = -1, we obtain $\operatorname{tr} K = \pi$. Another useful identity is: Let *A* be an $n \times n$ matrix over **C**. Assume that $A^2 = cI_n$, where $c \in \mathbf{R}$. Then

$$\exp(A) = I_n \cosh(\sqrt{c}) + \frac{A}{\sqrt{c}} \sinh(\sqrt{c}).$$
(6)

If we apply the result to the 2×2 matrix ($z \neq 0$)

$$A = \begin{pmatrix} 0 & z \\ -\overline{z} & 0 \end{pmatrix}$$

(i.e., A is skew-Hermitian $\overline{A}^T = -A$) we obtain

$$e^{B} = I_{2}\cos(|z|) + \frac{A}{|z|}\sin(|z|).$$

We first apply the cosine-sine decomposition. Any unitary $2^n \times 2^n$ matrix U can be decomposed as

$$U = \begin{pmatrix} U_1 & 0\\ 0 & U_2 \end{pmatrix} \begin{pmatrix} C & S\\ -S & C \end{pmatrix} \begin{pmatrix} U_3 & 0\\ 0 & U_4 \end{pmatrix}$$
(7)

where U_1 , U_2 , U_3 , U_4 are $2^{n-1} \times 2^{n-1}$ unitary matrices and C and S are the $2^{n-1} \times 2^{n-1}$ diagonal matrices

$$C = \operatorname{diag}(\cos \alpha_1, \cos \alpha_2, \dots, \cos \alpha_{2^{n-1}}), \quad S = \operatorname{diag}(\sin \alpha_1, \sin \alpha_2, \dots, \sin \alpha_{2^{n-1}})$$
(8)

where $\alpha_{xj} \in \mathbf{R}$. Consider first the NOT-gate given by (1). We find a 2 × 2 Hermitian matrix *K* such that $U_{\text{NOT}} = \exp(iK)$. We have ($\alpha \in \mathbf{R}$.)

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} u_1 & 0 \\ 0 & u_2 \end{pmatrix} \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} u_3 & 0 \\ 0 & u_4 \end{pmatrix}$$

where $u_1, u_2, u_3, u_4 \in \mathbb{C}$ with $|u_1| = |u_2| = |u_3| = |u_4| = 1$. Matrix multiplication yields

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} u_1 u_3 \cos \alpha & u_1 u_4 \sin \alpha \\ -u_2 u_3 \sin \alpha & u_2 u_4 \cos \alpha \end{pmatrix}.$$

Since $u_1, u_2, u_3, u_4 \neq 0$ we obtain $\cos \alpha = 0$. We select the solution $\alpha = \pi/2$. Thus $\sin(\pi/2) = 1$ and $u_1u_4 = 1, -u_1u_3 = 1$. We select the solution $u_1 = u_4 = 1$, $u_2 = u_3 = i$. Thus we obtain the decomposition

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix} = e^{iK}.$$

We set V = diag(-i, 1). Consequently V is unitary. It follows that

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = V^* e^{i(K - \pi I_2/2)} V = e^{iV^*(K - \pi I_2/2)V}$$

For $\alpha = \pi/2$ we obtain

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} \cos(\pi/2) & \sin(\pi/2) \\ -\sin(\pi/2) & \cos(\pi/2) \end{pmatrix} = \exp\left(\alpha \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\right)\Big|_{\alpha=\pi/2}.$$

Comparing the exponents yields

$$\begin{pmatrix} 0 & \pi/2 \\ -\pi/2 & 0 \end{pmatrix} = i V^* (K - \pi I_2/2) V$$

Since *K* is a Hermitian matrix we can write

$$K = \begin{pmatrix} a & b \\ \overline{b} & d \end{pmatrix}, \quad a, d \in \mathbf{R}.$$

Thus we obtain $a = d = \pi/2$, $b = -\pi/2$. Finally

$$K = \begin{pmatrix} \pi/2 & -\pi/2 \\ -\pi/2 & \pi/2 \end{pmatrix} = \frac{\pi}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}.$$

Next we consider the cosine-sine decomposition of the Hadamard gate given by (2). We have $(\alpha \in \mathbf{R})$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} u_1 & 0 \\ 0 & u_2 \end{pmatrix} \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} u_3 & 0 \\ 0 & u_4 \end{pmatrix}$$

where $u_1, u_2, u_3, u_4 \in \mathbb{C}$ with $|u_1| = |u_2| = |u_3| = |u_4| = 1$. Matrix multiplication yields

$$\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix} = \begin{pmatrix}u_1u_3\cos\alpha & u_1u_4\sin\alpha\\-u_2u_3\sin\alpha & u_2u_4\cos\alpha\end{pmatrix}.$$

Thus we obtain four equations with a solution $\alpha = \pi/4$ and $u_1 = u_3 = u_4 = 1$, $u_2 = -1$. Therefore we have the decomposition

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2}\\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \exp\left(\alpha \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}\right) \Big|_{\alpha = \pi/4}.$$

Note that the two matrices on the right-hand side do not commute. Thus we have a Hamilton operator for each unitary matrix. We can transform the NOT-gate to the σ_z -gate using the Hadamard gate

$$U_H U_{\text{NOT}} U_H^{-1} = \sigma_z.$$

In the Schur decomposition every $n \times n$ matrix *A* is similar to a matrix in upper triangular form, and a unitary matrix may be chosen to produce the transformation. If the matrix *A* is Hermitian then the matrix is in diagonal form after the unitary transformation. Let *K* be the Hermitian matrix

$$K = \begin{pmatrix} a & b \\ \overline{b} & a \end{pmatrix}, \qquad a \in \mathbf{R}, \quad b \in \mathbf{C}$$

with $b \neq 0$. We calculate e^{iK} using the normalized eigenvectors of K to construct a unitary matrix V such that V^*KV is a diagonal matrix. Then we specify a, bsuch that we find the U_{NOT} gate. The eigenvalues of K are given by $(|b| = \sqrt{bb})$

$$\lambda_1 = a + |b|, \qquad \lambda_2 = a - |b|$$

with the corresponding normalized eigenvectors

$$\mathbf{x}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ |b|/b \end{pmatrix}, \qquad \mathbf{x}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -|b|/b \end{pmatrix}.$$

Thus the unitary matrices V, V^* which diagonalize K are

$$V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ |b|/b & -|b|/b \end{pmatrix}, \quad V^* = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & b/|b|\\ 1 & -b/|b| \end{pmatrix}$$

with

$$D := V^* K V = \begin{pmatrix} a+|b| & 0\\ 0 & a-|b| \end{pmatrix}$$

From $U = e^{iK}$ it follows that $V^*UV = V^*e^{iK}V = e^{iV^*KV} = e^{iD}$. Thus,

$$e^{iD} = \begin{pmatrix} e^{i(a+|b|)} & 0\\ 0 & e^{i(a-|b|)} \end{pmatrix}$$

and since $V^* = V^{-1}$ the unitary matrix U is given by $U = V e^{iD} V^*$. We obtain

$$U = e^{ia} \begin{pmatrix} \cos(|b|) & ib/|b|\sin(|b|) \\ i|b|/b\sin(|b|) & \cos(|b|) \end{pmatrix}$$

If $a = \pi/2$ and $b = -\pi/2$ we find U_{NOT} .

Calculating $\exp(A)$ we can also use the Cayley–Hamilton theorem, and the Putzer method. We apply this method to find *K* for the Hadamard gate U_H . Using the Cayley-Hamilton theorem, we can write

$$f(A) = a_{n-1}A^{n-1} + a_{n-2}A^{n-2} + \dots + a_2A^2 + a_1A + a_0I_n$$
(9)

where the complex numbers $a_0, a_1, \ldots, a_{n-1}$ are determined as follows: Let

$$r(\lambda) := a_{n-1}\lambda^{n-1} + a_{n-2}\lambda^{n-2} + \dots + a_2\lambda^2 + a_1\lambda + a_0$$

which is the right-hand side of (9) with A^j replaced by $\lambda^j (j = 0, 1, ..., n - 1)$. For each distinct eigenvalue λ_j of the matrix A, we consider the equation

$$f(\lambda_j) = r(\lambda_j). \tag{10}$$

If λ_j is an eigenvalue of multiplicity k, for k > 1, then we consider also the following equations

$$f'(\lambda)|_{\lambda=\lambda_j} = r'(\lambda)|_{\lambda=\lambda_j}, \quad \dots \quad , \ f^{(k-1)}(\lambda)|_{\lambda=\lambda_j} = r^{(k-1)}(\lambda)|_{\lambda=\lambda_j}.$$

We apply the method given above to calculate $\exp(i K)$, where the Hermitian 2 × 2 matrix *K* is given by

$$K = \begin{pmatrix} a & b \\ \overline{b} & c \end{pmatrix}, \quad a, c \in \mathbf{R}, \quad b \in \mathbf{C}.$$

Then we find the condition on a, b and c such that $e^{iK} = U_H$. The eigenvalues of *iK* are given by

$$\lambda_{1,2} = \frac{i(a+c)}{2} \pm \frac{1}{2}\sqrt{2ac - a^2 - c^2 - 4b\bar{b}}.$$

We set in the following

$$\Delta := \lambda_1 - \lambda_2 = \sqrt{2ac - a^2 - c^2 - 4b\overline{b}}$$

To apply the method given above we have

$$r(\lambda) = \alpha_1 \lambda + \alpha_0 = f(\lambda) = e^{\lambda}.$$

Thus we obtain the two equations

$$e^{\lambda_1} = lpha_1\lambda_1 + lpha_0, \qquad e^{\lambda_2} = lpha_1\lambda_2 + lpha_0.$$

It follows that

$$\alpha_1 = \frac{e^{\lambda_1} - e^{\lambda_2}}{\lambda_1 - \lambda_2}, \qquad \alpha_0 = \frac{e^{\lambda_2}\lambda_1 - e^{\lambda_1}\lambda_2}{\lambda_1 - \lambda_2}$$

Thus we have the condition

$$e^{iK} = \alpha_1 iK + \alpha_0 I_2 = \begin{pmatrix} i\alpha_1 a + \alpha_0 & i\alpha_1 b \\ i\alpha_1 \bar{b} & i\alpha_1 c + \alpha_0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

We obtain the four equations

$$i\alpha_1 a + \alpha_0 = \frac{1}{\sqrt{2}}, \quad i\alpha_1 c + \alpha_0 = -\frac{1}{\sqrt{2}}, \quad i\alpha_1 b = \frac{1}{\sqrt{2}}, \quad i\alpha_1 \bar{b} = \frac{1}{\sqrt{2}}.$$

From the last two equations we find that $\bar{b} = b$, i.e., *b* is real. From the first two equations we find $\alpha_0 = -i\alpha_1(a+c)/2$ and therefore, using the last two equations, c = a - 2b. Thus

$$\begin{pmatrix} i\alpha_1a + \alpha_0 & i\alpha_1b \\ i\alpha_1\bar{b} & i\alpha_1c + \alpha_0 \end{pmatrix} = \begin{pmatrix} i\alpha_1b & i\alpha_1b \\ i\alpha_1b & -i\alpha_1b \end{pmatrix}.$$

From the eigenvalues of e^{iK} we find $e^{\lambda_1} - e^{\lambda_2} = 2$ and

$$\Delta = \sqrt{2ac - a^2 - c^2 - 4b^2} = 2\sqrt{2}ib.$$

Furthermore,

$$\lambda_1 = i(a-b) + \sqrt{2}ib, \qquad \lambda_2 = i(a-b) - \sqrt{2}ib.$$

Thus, we arrive at the equation

$$e^{i(a-b)+\sqrt{2}ib} - e^{i(a-b)-\sqrt{2}ib} = 2.$$

It follows that

$$ie^{i(a-b)}\sin(\sqrt{2}b) = 1$$

and, therefore,

$$i\cos(a-b)\sin(\sqrt{2}b) - \sin(a-b)\sin(\sqrt{2}b) = 1$$

with a solution

$$b = \frac{\pi}{2\sqrt{2}}, \quad a = \frac{\pi}{2}\left(3 + \frac{1}{\sqrt{2}}\right), \quad c = a - 2b = \frac{\pi}{2}\left(3 - \frac{1}{\sqrt{2}}\right)$$

Then the matrix *K* is given by

$$K = \frac{\pi}{2} \begin{pmatrix} 3+1/\sqrt{2} & 1\sqrt{2} \\ 1\sqrt{2} & 3-1/\sqrt{2} \end{pmatrix} = \frac{3\pi}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{\pi}{2} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

We note that the second matrix on the right-hand side is the Hadamard gate again.

Another method to find the Hermitian matrix *K* is to consider the principal logarithm (Steeb *et al.*, 2005) of a matrix $A \in \mathbb{C}^{n \times n}$ with no eigenvalues on \mathbb{R}^- (the closed negative real axis). This logarithm is denoted by log *A* and is the unique matrix *B* such that $\exp(B) = A$ and the eigenvalues of *B* have imaginary parts lying strictly between $-\pi$ and π . For $A \in \mathbb{C}^{n \times n}$ with no eigenvalues on \mathbb{R}^- we have the following integral representation

$$\log(s(A - I_n) + I_n) = \int_0^s (A - I_n)(t(A - I_n) + I_n)^{-1} dt.$$
(11)

Thus with s = 1, we obtain

$$\log A = \int_0^1 (A - I_n)(t(A - I_n) + I_n)^{-1} dt$$
(12)

where I_n is the $n \times n$ identity matrix. Note that, this method cannot be applied to U_{NOT} and U_H since they admit the eigenvalue -1. As an example, consider the unitary operator

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$$

We calculate log U to find i_K given by $U = \exp(i_K)$. We set $B = i_K$ in the following. The eigenvalues of U are given by

$$\lambda_1 = \frac{1}{\sqrt{2}}(1+i), \quad \lambda_2 = \frac{1}{\sqrt{2}}(1-i).$$

Thus the condition to apply the Eq. (12) is satisfied. We consider first the general case $U = (u_{jk})$ and then simplify to $u_{11} = u_{22} = 1/\sqrt{2}$ and $u_{21} = -u_{12} = 1/\sqrt{2}$.

We obtain

$$t(U - I_2) + I_2 = \begin{pmatrix} 1 + t(u_{11} - 1) & tu_{12} \\ tu_{21} & 1 + t(u_{22} - 1) \end{pmatrix}$$

and

$$d(t) := \det(t(U - I_2) + I_2) = 1 + t(-2 + \operatorname{tr} U) + t^2(1 - \operatorname{tr} U + \det U).$$

Let $X \equiv \det U - \operatorname{tr} U + 1$. Then

$$(U-I_2)(t(U-I_2)+I_2)^{-1} = \frac{1}{d(t)} \begin{pmatrix} tX+u_{11}-1 & u_{12} \\ u_{21} & tX+u_{22}-1 \end{pmatrix}.$$

With $u_{11} = u_{22} = 1/\sqrt{2}$, $u_{21} = -u_{12} = 1/\sqrt{2}$ we obtain $d(t) = 1 + t(-2 + \sqrt{2}) + t^2(2 - \sqrt{2})$

and $X = 2 - \sqrt{2}$. Thus the matrix takes the form

$$\frac{1}{d(t)} \begin{pmatrix} t(2-\sqrt{2})+1/\sqrt{2}-1 & -1\sqrt{2} \\ 1\sqrt{2} & t(2-\sqrt{2})+1/\sqrt{2}-1 \end{pmatrix}.$$

Since

$$\int_0^1 \frac{1}{d(t)} dt = \frac{2}{\sqrt{2}} \left| \arctan\left(\frac{2(2-\sqrt{2})t+\sqrt{2}-2}{\sqrt{2}}\right) \right|_0^1 = \sqrt{2} \frac{\pi}{4}$$

and

$$\int_{0}^{1} \frac{t}{d(t)} dt = \frac{1}{\sqrt{2}} \frac{\pi}{4}$$

we obtain

$$K = \begin{pmatrix} 0 & i\pi/4 \\ -\pi/4 & 0 \end{pmatrix}.$$

The unitary matrices are elements of the Lie group U(n). The corresponding Lie algebra are the matrices with the condition $X^* = -X$. An important subgroup of U(n) is the Lie group SU(n) with the condition that det U = 1. Note that the Hadamard gate and the NOT-gate are not elements of the Lie algebra SU(2) since the determinants of these unitary matrices are -1. The corresponding Lie algebra SU(n) of the Lie group SU(n) are the $n \times n$ matrices given by $X^* = -X$ and trX = 0.

Let $\sigma_1, \sigma_2, \sigma_3$ be the Pauli spin matrices. Then any unitary matrix in U(2) can be represented by

$$U(\alpha, \beta, \gamma, \delta) = e^{i\alpha I_2} e^{-i\beta\sigma_3/2} e^{-i\gamma\sigma_2/2} e^{-i\delta\sigma_3/2}$$

960

where $0 \le \alpha < 2\pi, 0 \le \beta < 2\pi, 0 \le \gamma \le \pi$ and $0 \le \delta < 2\pi$. Then

$$U(\alpha, \beta, \gamma, \delta) = \begin{pmatrix} e^{i\alpha} & 0\\ 0 & e^{i\alpha} \end{pmatrix} \begin{pmatrix} e^{-i\beta/2} & 0\\ 0 & e^{i\beta/2} \end{pmatrix} \begin{pmatrix} \cos(\gamma/2) & -\sin(\gamma/2)\\ \sin(\gamma/2) & \cos(\gamma/2) \end{pmatrix} \begin{pmatrix} e^{-i\delta/2} & 0\\ 0 & e^{i\delta/2} \end{pmatrix}.$$

Obviously this is the sine-cosine decomposition described above. Each of the four matrices on the right-hand side are unitary and $e^{i\alpha}$ is unitary. Thus U is unitary and $det(U) = e^{2i\alpha}$. We obtain the special case of the Lie group SU(2) if $\alpha = 0$. The most important two-qubit gates are the controlled-NOT-gate

$$U_{\text{CNOT}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

and the swap-gate

$$U_{\rm SWAP} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Both gates can be written as direct sums, i.e.

$$U_{\text{CNOT}} = I_2 \oplus U_{\text{NOT}}, \quad U_{\text{SWAP}} = \oplus U_{\text{NOT}} \oplus 1.$$

Thus, we can apply the result given above for the construction of the Hermitian matrix K. The same applies for the Fredkin gate and the Toffoli gate which are three qubit gates.

REFERENCES

- Hardy, Y. and Steeb, W.-H. (2001). *Classical and Quantum Computing with C++ and Java Simulations*, Birckhäuser-Verlag, Basel.
- Nielsen, M. A. and Chuang, I. L. (2000). Quantum Computation and Quantum Information, Cambridge University Press, Cambridge.
- Steeb, W.-H. and Hardy, Y. (2004) Problems and Solutions in Quantum Computing and Quantum Information, World Scientific, Singapore.
- Steeb, W.-H., Hardy, Y., Hardy, A., and Stoop, R. (2004). Problems and Solutions in Scientific Computing with C⁺⁺ and Java Simulations, World Scientific, Singapore.